

Some possible questions:

- How does the sense of taste work?
- Do factors other than genetics affect the ability to taste PTC?
- How did PTC sensitivity evolve?
- Are supertasters cuter than non-tasters?
- Are there gender differences in PTC sensitivity?
- Do PTC tasters have a specific DNA polymorphism?

Finding background information

- Primary literature
- Review articles
- Textbooks
- Your colleagues
- Internet resources

- Sequence alignment programsStructure prediction programs
- Gene expression and regulation databases
- Organism-specific databases
- Pathway analysis
- Promoter/SNP prediction

And many others!

Planning experiments

For each experiment:

- Define your objective
- Plan your general strategy
- Decide on experimental details

Planning experiments

- For each experiment: Define your objective
 - To determine whether strong smells decrease sensitivity to PTC paper
- Plan your general strategy
 - Participants will taste PTC paper and report on the taste. They will then smell mint while re-tasting PTC paper and report on the taste.
- Decide on experimental details
 - How many participants? What kind of mint? How will they rate PTC taste? What will be the controls?

experiment?

- Has a clear purpose
- Answers one question definitively
- Has appropriate controls
- Has limited variables
- Has a large enough sample size
- Uses available reagents and equipment
- Can be repeated by you and others

Common controls

Positive controls

Show that everything is working well, and that your conditions are able to achieve a positive result, even if your samples turn out all negative

Negative controls

Show the base-line background in your experiment, using known samples that should produce a negative result

report whether there is no taste, weak bitter taste, or strong bitter taste

Experimental Group

Half of the subjects will retaste PTC paper while smelling mint and will report whether there is no taste, weak bitter taste or strong bitter taste

Control Group

Half of the subjects will retaste PTC paper while smelling parsley and will report whether there is no taste, weak bitter taste or strong bitter taste

- What are the controls in this experiment?
- What are the variables?
- Are there other controls that we're missing?

Office of internal of the control of

Learning a new technique

- Find a protocol
- Read it carefully
- Consult with your mentor or other experts
- Make or acquire reagents ahead of time
- Learn how to use required equipment
- Do a "dry run"
- Allow plenty of time for the first run

Making or acquiring reagents

- If ordering reagents, do it as early as possible
- Research how each reagent should be used and stored
- If making up solutions

Document everything

- □ Make sure you know what solvent to use
- Brush up on molarity and serial dilutions, if necessary
- □ Check and re-check all calculations

Common mistakes

- Doing huge experiments with too many samples
- Not thinking carefully about your controls before you start
- Waiting until the last minute before tracking down reagents
- Forgetting to grow up the cells you need ahead of time

- Identify possible sources of error
 - Reread protocol
 - Check calculations
 - Consider whether reagents or equipment might be suspect
 - □ Think about repeating experiment as is
- Consult with mentor
- Consider whether your hypothesis might be flawed
- Don't get frustrated!

Class data collection- Part 2

- 1. Taste the PTC paper while smelling the mint or parsley and pick one description:
 - ♦This tastes like paper
 - ♦This tastes a little bitter
 - ♦This tastes horribly bitter
- 2. Dispose of all waste into the ziploc
- Class data will be collected and recorded on the board

- How many people changed their responses after smelling the mint?
- How many people changed their responses in the control group?
- · Can we draw any conclusions?
- · Does our data suggest future experiments?
- · How do we want to present this data?

Raw data: Recorded in your notebook				
Subject	Mint or parsley	Before	After	Other types of raw data: Gels Blots Photographs Observations
1	М	No	No	
2	М	Strong	Strong	
3	М	Strong	Weak	
4	М	Weak	Weak	
5	Р	No	No	
6	Р	Weak	Strong	
7	Р	Weak	Weak	
				-

Data: 48/50 study participants reported no change in PTC taste sensitivity after smelling mint, compared to 49/50 in the control group.

Interpretations:

- •Smell does not affect taste
- •Smelling mint does not affect taste
- •The smell of mint does not affect PTC taste sensitivity

Question: How could we design an experiment to better test the broader conclusion that smell does not affect taste?

means?

- Is it statistically significant?
- Are you doing the right statistical analysis?
- Do you have a large enough sample size or enough repetitions?
- Are there alternative explanations?
- Are there confounding factors?

Pitfalls in data analysis

- Only considering specific data points
- Over-interpretation of data
- Ignoring confounding factors
- Using too small of a sample size

Officer Internaced FROM NO.

Scientific misconduct

Falsifying data

Can happen accidentally when you "process" data

■ Fabricating data

This is always wrong!

Plagiarism

Includes using other's IDEAS as well as WORDS

Same basic scientific method no matter what kind of research you do

- · Basic research
- · Clinical research
- · Translational research
- · Social and behavioral research
- Epidemiology
- · Computational research
- · Mathematical modeling

Special considerations for epidemiologists

- Are you surveying an appropriate population?
- Do you have enough study participants?
- Are you using the appropriate analytical tools?
- Have you considered potential alternative explanations?
 - Confounding factors
 - □ Bias
 - Chance
 - □ Reverse causality

Special considerations for clinical research

- Bioethics
- Professionalism
- Confidentiality
- Possibility of health risks for investigator
- Critical to have appropriate study design and meticulous technique
 - □ Institutional Review Board (IRB)
 - □ Data Safety Monitoring Board
 - □ Double-blind studies

More on **bioethics**: The 7 major ethical principles that guide clinical research

- Social and clinical value
- Scientific validity

Each study must have:

- Fair subject selection
- Favorable risk-benefit ratio
- Independent review
- Informed consent
- Respect for potential and enrolled subjects

Special considerations when using animals in research

- Oversight by the NIH Office of Laboratory Animal Welfare
- Must have an Animal Care and Use Protocol
- Ensuring humane and responsible use
 - Carefully designed experiments
 - □ Minimizing the number of animals used
 - Avoiding/minimizing pain and stress
 - Appropriate housing conditions
 - Appropriate sedation or anesthesia
 - Veterinary care, when necessary

Ethical considerations for all kinds of scientists

- Honesty
- Objectivity
- Integrity
- Carefulness
- · Respect for intellectual property
- · Responsible publication
- Respect for colleagues

